Manufacturing Scheduling for

 Electricity Cost and Peak Demand Reduction in a Smart Grid ScenarioFu Zhao

Associate Professor
Purdue University

Flow shop scheduling-2 machine case

Smart grid brings both challenge and

 opportunity to manufacturing scheduling$>$ We are building an integrated model (using GridLAB-D) consisting of residential, commercial, and industrial end users and investigate how manufacturing activities can be scheduled to take advantages of a smart grid.
$>$ The goal is to minimize electricity charge for manufacturing without reducing production, while having manufacturing facilities contribute to the reduction of power grid peak demand.

ELECTRICITY END-USES

Industrial facilities have very different profile

Commercial Sector

[Source: U.S. Department of Energy]

ELECTRICITY END-USES

Industrial Energy End-Use Splits

Integrated model

-The price at time $t\left(P_{t}\right)$ as the product of a function of the marginal generator's fuel price $\left(\mathrm{g}_{\mathrm{t}}\right)$ and a function of the load $\left(\mathrm{q}_{\mathrm{t}}\right)$. - $\mathbf{C}(\mathrm{t})$ is a deterministic seasonal function that accounts for seasonality in both demand and supply

$$
\begin{aligned}
& N_{i t}=0,\left(t=1, \ldots, p_{i}-1 ; i \in \mathrm{M}\right) \\
& N_{i t}=\sum_{k=1}^{t-p_{i}+1} y_{i k},\left(t=p_{i}, \ldots, T, i \in \mathrm{M}\right) \\
& N_{i t} \geq N_{i+1, t}+x_{i+1, t}-x_{i t}+\delta_{i t},(i \in \mathrm{M} \backslash\{m\} ; t \in \mathrm{~T}) \\
& \delta_{i t} \leq x_{i t},(i \in \mathrm{M} ; t \in \mathrm{~T}) \\
& \delta_{i t}+x_{i t} \leq 1,(i \in \mathrm{M} ; t \in \mathrm{~T}) \\
& x_{i t}-x_{i+1, t} \leq \delta_{i t},(i \in \mathrm{M} \backslash\{m\} ; t \in \mathrm{~T}) \\
& N_{m T} \geq N_{0} \\
& N_{i t} \in\{0, \ldots, \infty\},(i \in \mathrm{M} ; t \in \mathrm{~T}) \\
& x_{i t}, y_{i t}, \delta_{i t} \in\{0,1\},(i \in \mathrm{M} ; t \in \mathrm{~T}) \\
& x_{i t}=\sum_{k=0}^{t} y_{i k},\left(t=1, \ldots, p_{i}-1 ; i \in \mathrm{M}\right) \\
& x_{i t}=\sum_{k=t-p_{i}+1}^{t} y_{i k},\left(t=p_{i}, \ldots, T ; i \in \mathrm{M}\right) \\
& \sum_{k=t}^{t-p_{i}+1} x_{i k} \geq p_{i} y_{i t},\left(t=1, \ldots, T-p_{i}+1 ; i \in \mathrm{M}\right) \\
& \text { Determine the number of products that } \\
& \text { have finished on machine } i \text { until time } t \text {. } \\
& \text { Ensure that the products are } \\
& \text { produced in a flow shop } \\
& \text { Ensure that for each job the } \\
& \text { number produced at the end } \\
& \text { time T is at least } N_{m i} \\
& \text { They ensure that once a job is } \\
& \text { processed on machine } i \text {, it could } \\
& \text { not be interrupted until it is } \\
& \text { finished }
\end{aligned}
$$

Power profile (Business as usual)

8-machine flow shop w/production quota=162/day

