Manufacturing Scheduling for Electricity Cost and Peak Demand Reduction in a Smart Grid Scenario

Fu Zhao

Associate Professor

Purdue University

	Industrial Rate Structure		I2 Rate Structure	
Demand Charge	\$ 9.00	per kW	\$ 17.20	per kW
Electricity Consumption				
Charge	\$ 0.06175	per kWh	\$ 0.0384	per kWh
Power Tracker Charge	\$ 0.0009	per kWh	\$ 0.0009	per kWh

Flow shop scheduling-2 machine case

3

Smart grid brings both challenge and opportunity to manufacturing scheduling

- ➤We are building an integrated model (using GridLAB-D) consisting of residential, commercial, and industrial end users and investigate how manufacturing activities can be scheduled to take advantages of a smart grid.
- ➤The goal is to minimize electricity charge for manufacturing without reducing production, while having manufacturing facilities contribute to the reduction of power grid peak demand.

ELECTRICITY END-USES

Industrial Energy End-Use Splits

at ILLINOIS INSTITUTE OF TECHNOLOGY

Other 8% Air conditioning & Lighting 13% Industrial equipment 80%

Strategies: Industrial sector can control equipments' idle time with sensor and automatic control technology to reduce energy use.
Challenge: Factories have difficulty in adjusting production schedules without production loss.

[Source: U.S. Department of Energy]

Integrated model

•The price at time t (P_t) as the product of a function of the marginal generator's fuel price (g_t) and a function of the load (q_t).

 c(t) is a deterministic seasonal function that accounts for seasonality in both demand and supply

$$N_{ii} = 0, (t = 1, ..., p_i - 1; i \in M)$$

$$N_{ii} = \sum_{k=1}^{t-p_i+1} y_{ik}, (t = p_i, ..., T, i \in M)$$

$$Determine the number have finished on machinal have finished have finished on machinal have finished have finither have finished have finishe$$

ILLINOIS INSTITUTE OF TECHNOLOG

ne the number of products that shed on machine *i* until time *t*.

> Ensure that the products are produced in a flow shop

Ensure that for each job the number produced at the end ime T is at least N_{mi}

They ensure that once a job is processed on machine *i*, it could not be interrupted until it is inished

t)

Power profile (Business as usual)

8-machine flow shop w/production quota=162/day

